If it's not what You are looking for type in the equation solver your own equation and let us solve it.
a^2=64a
We move all terms to the left:
a^2-(64a)=0
a = 1; b = -64; c = 0;
Δ = b2-4ac
Δ = -642-4·1·0
Δ = 4096
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4096}=64$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-64)-64}{2*1}=\frac{0}{2} =0 $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-64)+64}{2*1}=\frac{128}{2} =64 $
| -4j=-5j-2 | | a^2=64a2=64 | | 2x+36+7x-9=180 | | 1.33=(8/6x) | | 8x+6=2(3-x) | | 3.2x+8=-12 | | 22-5(6v-1)=2v+13 | | 2n-6=4n+6 | | 8/(6x)=1.33 | | 3m-5m+10=36 | | -9+x/5=-5 | | 3(x−1)(x+5)=(2x(x−5))= | | 3(x−1)(x+5)=(2x(x−5)) | | (8/(6x))=1.33 | | 4/r+28=11 | | 35r+600=55r | | 3n+5=4n-30 | | 35r+600=55 | | 0.75(2x-6)+0.5=0.4(3x+20) | | -4(11+5n)=8-4(n+1) | | 3/2v-3=6/5v-1/2 | | Y+7/3=y5 | | 5x+15=140÷5+1 | | 4(x-2)=(x+4) | | 15a-3(3a+4)=6 | | 7x-(5+3)=5(x-3)+2 | | 1+5y=36 | | 5(7x-2)=72 | | 1+7y=64 | | 1/20+9.3=x | | 8-0.6=0.4x-19 | | 3(10x+50)=420 |